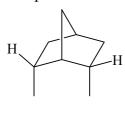
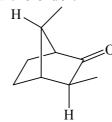
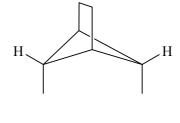
22704

120 MINUTES

1.		h among the follonistry?	wing is	not	included	in the	12 principle	es of Gree	n	
	A)	Maximise Deriva	tives		B)	Design	for Energy	Efficiency		
		Employ the best (D)	_	fer Auxiliari	-		
2.		is considered as a (Green so	lvent						
	A)	•			B)	Xylene				
	C)	Pyridine			D)	Diethy	l ether			
3.		Multiple sheets of graphite are arranged in a concentric cylinder. This is in accordance to the model.								
	A)	Parchment		B)	Russia	an Doll				
	C)	Baloon		D)	Stacke	ed				
4.		is not a top down a	pproach	in na	anotechno	logy.				
	A)	O 1 3	B)		_					
	C)	Hydrothermal syr	thesis	D)	Liquid	d phase	exfoliation			
5.		Match the disasters in List I with the place where it happened in List II. List I List II Depart HS								
	a.	MIC leak			1. Doi	nora, U	S			
	b.	Release of dioxin	-	loud						
	c.	Thick smog forma			3. Che					
	d.	Nuclear plant exp	losion		4. Sev	eso, Ita	ly			
	A)	a-2, b-4, c-1, d-3		B)	a-4, b-	-2, c-1,	d-3			
	C)	a-1, b-2, c-3, d-4		D)	a-2, b-	-4, c-3,	d-1			
6.	Exces	ss nitrate in drinkin	g water (can c	ause:					
	A)	Laxative effect		B)	Methe	emogiob	inemia			
	C)	Damage to liver		D)	Leuco	derma				
7.	Matcl Lis	h the Polymers in I	ist I wit List II	h the	eir use in L	List II				
	a.	Kevlar		arpets	S					
	b.	Orlon		•	Proof jack	ets				
	c.	Teflon			ning suit					
	d.	Nylon	4. No	on sti	ick cookw	are				
	A)	a-2, b-1, c-4, d-3		B)	a-1, b-	-2, c-4,	d-3			
	C)	a-1, b-2, c-3, d-4		D)	-	-4, c-3,				


8.	The g A) B) C) D)	glass transition temperatures decrease in the order: PTFE > PET > Polysulfone > Polypropylene Polypropylene > PET > PTFE > Polysulfone Polysulfone > PTFE > PET > Polypropylene PTFE > Polysulfone > Polypropylene > PET						
9.	Which A) C)	h among the fo Amoxicillin Cephalospor		g is primarily B) D)	Vanco	Bactericidal di omycin romycin	ug?	
10.	In the A)	abbreviation Diabetic	ADME B)	used in pharm Diagnosis		gy, D refers to Digestion		Distribution
11.	from	h among the forthat of others?			_	-		
	A)	H_2SO_4	B)	SF ₄	C)	$SOCl_2$	D)	SO ₂ Cl ₂
12.	Which of U ²³	h among the fo	ollowin	g interhaloger	n comp	ounds is used	in the	enrichment
	A)	IF ₇	B)	ClF ₅	C)	IF ₅	D)	ClF ₃
13.	of eac Lis a. b. c.	Closo Nido	I. 1 2 3	e type of bora List II . $B_5H_{11}^{2-}$. B_6H_{10} . $B_{12}H_{12}^{2-}$. $B_{10}H_{15}^{2-}$	nes wit	th List II cont	aining (examples
	A) C)	a-2, b-4, a-3, b-2, a-3, b-2, a-3, a-2, a-3, a-2, a-2, a-3, a-2, a-2, a-2, a-2, a-2, a-2, a-2, a-2	c - 1, d c - 4, d	B) B) D)	a - 2, a - 3,	b-3, $c-4$, $db-2$, $c-1$, d	- 1 - 4	
14.	Which A) B) C) D)		ingle is S ₄ N ₄ (ochrom	greater than that N) gives S ₄ ic substance	the N-S	_		
15.	The a A)	qua complexe Gd ³⁺		ich of the foll Yb ³⁺		ions is colour Ce ³⁺	ed? D)	Sm ³⁺
16.	The g	round state ten ⁶ H _{5/2}		bol of Ce ³⁺ is:		$^{2}F_{7/2}$	D)	$^{2}F_{2}$


17.	 Choose the false statements related to Tungsten bronzes. are FALSE? They are non-stoichiometric compounds with general formula M_xWO₃ They have a metallic lustre The M⁺ ion never occupies an interstitial site in them They are bad conductors of electricity 								
	A) C)	1, 2 and 3 on 3 and 4 only	-		B) D)		2 only nd 4 only		
18.	The et A)	ffective magn 1.732 μ _B	etic mo B)		f Ce ³⁺ i μ _B		$1.237~\mu_B$	D)	$2.535~\mu_B$
19.		ravelength in a point. null isoelectric	which t	he abso	B) D)	of two isostat isosbe	tic	cies are	the same is
20.	 When a mixture of weak acid and strong acid is titrated against a strong base (taken in a burette) in conductometric titration, the conductance: A) Decreases sharply, then increases slowly and then increases sharply B) Increases sharply, then decreases slowly and then increases sharply C) Increases sharply, remains constant and then increases sharply D) Decreases sharply, remains constant and then increases sharply 								
21.	Choos A) B) C) D)	te the wrong It reduces th Diffusion cu The electrod It can be use	e thickn rrent is le is sim	ness of to much lapte to o	the diff ess tha constru	fusion l n DME ct	ayer	lectrode	:
22.	Which A) B) C) D)	The method Extremely m Standard sol Generating e	is high ninute q utions a	ly sensi uantitie are not	tive. es of tit require	rant car	n be generate	ed	
23.	The te A) C)	erm "saturated KCl concent Hg concentr	ration	saturate	d calon B) D)	calom	etrode refers el concentrat of these		
24.	A plot A)	of heat differ TG	rence as	s a func DTG	ction of	temper C)	rature is done DSC	e in: D)	DTA
25.		many decomp aposition of car		_			_	n of the	5


26.	 Which among the following is false regarding Neutron Activation Analysis? A) It is based on measurement of characteristic gamma energies from artificially produced radionuclides B) It can be used in the analysis of major, minor, and trace elements. C) It is a very sensitive technique. D) The samples irradiated in NAA can be safely discarded as they do not retain radioactivity 							
27.	The Sl	I unit of radio Rad	oactivity B)	y is: Curie	C)	Becquerel	D)	Gray
28.		n(R): Then	e is less					n in $[MnO_4]^-$. $nO_4]^{2-}$ than by
	A) B) C) D)		R are tr t R is fa	rue but R is n lse		ct explanation orrect explana		A
29.	A) Two separate water exchange rates are found for $[Cu(H_2O)_6]^{2+}$ in						²⁺ in	
	B)	aqueous solution Pentachlorooxochromate(V) is a d^1 complex and is labile, with vacancies in the t_{2g} levels						
	C)D)	[Pt(CO)Cl ₃] reacts with ammonia to form trans-[Pt(CO)(NH ₃)Cl ₂] as CO is the stronger trans director						
30.						s a second-ro t likely metal Rh		
31.	The number of stereoisomers possible for the complexes decreases in the order (all ligands are monodentate) A) $Ma_3bcd > Ma_2b_2cd > Ma_2b_2c_2 > Ma_4b_2$ B) $Ma_2b_2c_2 > Ma_3bcd > Ma_2b_2cd > Ma_4b_2$ C) $Ma_2b_2cd > Ma_2b_2c_2 > Ma_3bcd > Ma_4b_2$ D) $Ma_2b_2cd > Ma_3bcd > Ma_2b_2c_2 > Ma_4b_2$							
32.	The or series	_	g field s	strength of lig	gands ac	cording to the	e spectro	ochemical
	A) B)		-< F ⁻ <	SCN				
	C) D)		$C) \qquad SCN^- < PPh_3 < NO_2^- < F^-$					

33.	The FA) B) C) D)	The oxidation state of platinum is +2 The organic ligand lies perpendicular to the plane.						
34.	Vaska A) B) C) D)	•	orobis(tr obis(tripl	ipheny nenylpl	lphosphine hosphine)ii	e)iridium(ridium(I)	III)	
35.	Which among the following organometallic compounds obey the 18 electron rule?							
	1.	$(C_2H_4)PdCl_2$ $(\eta^5-C_5H_5)$ Fe(CC	2. 0) ₂ Cl	ClMr 5.	n(CO) ₅ IrCl(CO)			5 – $C_{5}H_{5})_{2}$
	A) C)	1, 3 and 5 only 2 and 4 only		B) D)	2, 3 and 4 4 and 5or	-		
36.	freque A) B) C)	h among the follow encies? $[Ir(CO)_6]^{3+} > [Oseting (CO)_6] > [Re(CO)_6] > [Ir(CO)_6] > [Ir(CO)_6]^{2+} > [Ir(CO)_6$	$(CO)_6]^{2+}$ $CO)_6]^{+} >$ $O)_6]^{3+} >$	> [Re([Os(Co [Os(Co	$CO)_{6}]^{+} > [TO)_{6}]^{2+} > [ITO)_{6}]^{2+} > [RO)_{6}]^{2+} > [RO)_$	$W(CO)_{6}^{6}$ $C(CO)_{6}^{3+}$ $E(CO)_{6}^{4}$; order (of stretching
37.	Wack A)	ter Process uses PtCl ₄ B)		•		lCl ₂	D)	Co ₂ (CO) ₈
38.	Minir A) C)	mata Disease was d Mercury Arsenic	ue to	 B) D)	Methylm Cadmiun	2		
39.	Lis a. b. c.	h the metal in List 1 Fe Cu Mg Zn a-4, b-2, c-3, d-1 a-1, b-2, c-3, d-4	List II	boxype onitase orophy nocyan B)	eptidase	c-3, d-1	le in Li	st II.

- 40. Which of the following are TRUE regarding Vitamin B_{12} ?
 - Its structure is based on a corrin ring. 1.
 - 2. It is a water soluble vitamin.
 - 3. The central metal ion is coordinated to 4 nitrogens
 - 4. It is synthesised in the human liver
 - A) 1, 2, 3 and 4
- B) 3 and 4 only
- 1, 2 and 3 only C)
- 1 and 2 only D)
- 41. The number of ATP and NADPH used in Calvin cycle to produce 1 molecule of glucose are:
 - 18 and 12 A)
- B) 12 and 18
- C) 12 and 12
- D) 6 and 9
- 42. Long range coupling values, J_{AB} (between the H's shown) in the following compounds will follow the order.

III

I

A)

- I > II > III
- II > III > IB)
- C) III > I > II
- II > II > ID)
- 43. Which among the following is TRUE regarding Cupferon?
 - The ammonium salt of N-nitroso-N-phenylhydroxylamine 1.

II

- 2. A precipitation reagent employed in gravimetric analysis
- A tridentate ligand 3.
- A reagent used in colorimetric analysis 4.
- 2 and 4 only A)
- B) 1 and 3 only
- 1, 2 and 3 only C)
- D) 1, 2 and 4 only
- The standard error of a mean, s_{m} is given by the equation: 44.
- $s_m = \frac{s}{\sqrt{N}}$ B) $s_m = s\sqrt{N}$ C) $s_m = \frac{\sqrt{N}}{s}$ D) $s_m = \sqrt{sN}$

- 45. In reverse-phase partition chromatography:
 - the stationary phase is polar and the mobile phase is nonpolar A)
 - the stationary phase is nonpolar and the mobile phase is polar B)
 - C) both stationary phase and mobile phase are polar
 - both stationary phase and mobile phase are nonpolar D)

46.	Whi	Which among the following are TRUE regarding an ideal standard solution for							
	a tri	metric method?							
	1.	It will be sufficiently stable							

2. It will react rapidly with the analyte so that the time required between

additions of reagent is minimized.

3. It reacts completely with the analyte so that satisfactory end points are realized

4. It will undergo a selective reaction with the analyte that can be described by a balanced equation.

A) 1 and 2 only

B) 2, 3 and 4 only

C) 1 and 4 only

D) 1, 2, 3 and 4

47. The most widely used chromatographic detector in studying environmental samples is:

A) Flame ionization detector

B) Thermal Conductivity Detector

C) Electron Capture Detectors

D) Mass Spectrometry Detector

48. The data recorded by two students **P** and **Q** in an experiment is given below. The readings of:

	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5
P	20.11	20.52	20.38	20.79	20.22
0	20.25	20.27	20.24	20.23	20.26

A) P is more precise but Q is more accurate

B) Q is more precise but P is more accurate

C) P is more precise and accurate

D) Q is more precise and accurate

49. Identify the incorrect statement from among the following:

A) Both the stationary and the mobile phases in paper chromatography are liquids

B) The stationary phase is a solid and the mobile phase is a liquid in paper chromatography

C) The mobile phase in column chromatography is a liquid.

D) The stationary phase in Thin Layer Chromatography is a solid.

50. The process in which dissolved gases are swept out of a solvent by bubbles of an inert insoluble gas is known as:

A) Sparging

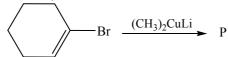
B) Isocratic elution

C) Gradient elution

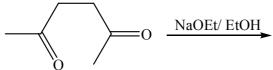
D) Resolving

51. The reagent used in the Nephlometric determination of Phosphate ion is:

A) Phenyl isothiocyanate


B) Ammonium molybdate

C) Barium Chloride


D) Molybdate-strychnine reagent

52.	The cut off wavelength of the solvents decrease in the order: A) Acetone > Benzene > CCl ₄ > Methanol B) Benzene > Acetone > CCl ₄ > Methanol C) Methanol > Acetone > Benzene > CCl ₄ D) CCl ₄ > Methanol > Acetone > Benzene						
53.	 When the sample reaches the flame in AAS, the process that happens follow the order: A) Volatilization, Desolvation and Dissociation B) Desolvation, Volatilization and Dissociation C) Volatilization, Dissociation and Desolvation D) Dissociation, Desolvation and Volatilization 						
54.	 Which among the following is wrongly paired? A) Copper – Wilsons Disease B) Cobalt – Siderosis C) Potassium – Hyperkalemia D) Selenium – White Muscle Disease 						
55.	The meta directing and deactivating group in aromatic electrophilic substitution among the following is A) $-NO_2$ B) $-Cl$ C) $-OH$ D) $-OCH_3$						
56.	Among the following, the highest nucleophilicity is exhibited by A) F ⁻ B) OH ⁻ C) CH ₃ ⁻ D) NH ₂ ⁻						
57.	The antiaromatic molecule among the following are: 1. Pentalene 2. Biphenylene 3. Cyclooctatetraene 4. Cyclopentadienyl cation 5. Pyrimidine A) 1, 2 and 3 only B) 2, 3 and 4 only						
	C) 1, 2 and 4 only D) 3, 4 and 5 only						
58.	Identify the wrong statement from among the following:						
	A) Nitrenes can be prepared by the thermolysis of azides B) Curtius reaction and Schmidt reaction involves nitrene intermediates C) Unlike carbenes, nitrenes are not electron deficient Alkenyl nitrenes generally rearrange to imines which are tautomeric with Nitriles						

59. Identify P in the reaction:

- A) CH₃
- B) B1
- C) Br
- CH_2Br
- 60. The major product of the reaction given below is

A) 0

- 0
- C) 0
- D)
- 61. Which among the following is obtained in high yields in the reaction given below?

B)

- A) C
- B) 0
- C) COCH₃
- D) COOCH3

62.	Which among	the follow	wing are	TRUE	regarding	DIBAL?
-----	-------------	------------	----------	------	-----------	--------

- 1. It is an electrophilic reducing agent
- 2. It can be employed in selective reductions of esters or nitriles to aldehydes
- 3. Camphor on reduction with DIBAL produces Isoborneol
- 4. Benzoic acid can be reduced to benzaldehyde with one equivalents of DIBAL at -70°C.
- A) 1, 2 and 3 only
- B) 1 and 2 only
- C) 3 and 4 only
- D) 1, 2, 3 and 4
- 63. Identify P and Q used in the following reaction.

 $C_6H_6 + P \xrightarrow{AlCl_3} 2$ -Methyl-1-phenyl-1-propanone \xrightarrow{Q} Isobutylbenzene

- A) $P = \text{terbutylchloride}; Q = N_2H_4, KOH/heat}$
- B) P = 2-Methylpropanoylchloride; $Q = N_2H_4$, KOH/heat
- C) P = 2-Chloropropane; Q = Methylmagnesium bromide
- D) P = Acetylchloride; Q = Propylmagnesium bromide
- 64. The IUPAC name of the compound given below is (*X*, *Y*)–5–chloro–2–methylhexa–2,4–dienal. Here X and Y should be:

- A) 2E, 4E
- B) 2Z, 4Z
- C) 2Z, 4E
- D) 2E, 4Z
- 65. Match the molecules in **List I** with their point groups in **List II**.

List I

- a. SOCl₂
- b. COCl₂

1. C_{2v} 2. $D_{\infty h}$

List II

c. CO₂

3. C_{2h}

d. N_2F_2

- 4. C_s
- A) a-4, b-1, c-3, d-2
- B) a-2, b-1, c-4, d-3
- C) a-1, b-2, c-4, d-3
- D) a-4, b-1, c-2, d-3
- 66. Cyclopentadienyl anion belongs to ----- point group.
 - A) C_5
- B) C_{5v}
- C) D_{5d}
- D) D_{5h}

67. The character table of C_{3v} point group and a total representation is given below. The total representation gets reduced as:

C_{3v}	Е	$2C_3$	$3\sigma_{v}$
A_1	1	1	1
A_2	1	1	-1
Е	2	-1	0
Γ	5	2	-1

- $A_2 + 2E$ A)
- B) $A_1 + 2E$
- C) $A_1 + 2A_2 + E$ D) $2A_1 + A_2 + E$

68. The number of mirror planes in the following molecules is in the order:

- $SF_6 > CH_4 > NH_3 = BCl_3$ B)
- $SF_6 > CH_4 > BCl_3 > NH_3$
- $CH_4 > SF_6 > BCl_3 = NH_3$ D) C)
- $CH_4 > SF_6 > NH_3 > BCl_3$

A solution of a certain dye has a molar absorptivity of 2×10^5 L mol⁻¹cm⁻¹ at a 69. wavelength of 606 nm. Then the concentration of a solution of this dye that has an absorbance equal to 1.6 in a cell of length 1 cm at this wavelength is----.

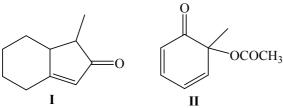
- $19.39 \times 10^{-2} \text{ molL}^{-1}$
- $3.2 \times 10^{-5} \, \text{molL}^{-1}$ B)
- $1.25 \times 10^5 \,\mathrm{molL}^{-1}$ C)
- D) $8 \times 10^{-6} \text{ molL}^{-1}$

The IR spectrum of hydrogen sulfide, H₂S, shows three strong bands at 1290 70. cm⁻¹, 2610.8 cm⁻¹, and 2684 cm⁻¹; and two weak bands at 2422 cm⁻¹ and 3789 cm⁻¹. These (denoted as I, II, III, IV and V respectively) can be assigned to:

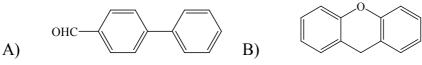
	I	II	III	IV	\mathbf{V}
A)	Bending	Sym. Str.	Asym. Str.	Overtone	Combination
B)	Sym. Str.	Asym. Str.	Bending	Overtone	Combination
C)	Asym. Str.	Sym. Str.	Bending	Combination	Overtone
D)	Sym. Str.	Asym. Str.	Overtone	Combination	Bending

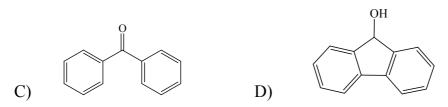
71. Statement 1: The Morse potential energy function can be used to describe anharmonic motion.

Statement 2: A Birge–Sponer plot may be used to determine the dissociation energy of the bond in a diatomic molecule.

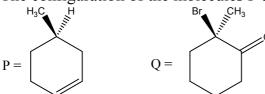

- 1 is True and 2 is False A)
- B) 1 is False and 2 is True
- Both 1 and 2 are True C)
- Both 1 and 2 are False D)

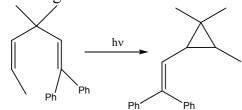
72. Isomer shift in Mossbauer spectroscopy provides information regarding


- A) Oxidation state
- Electronegativity of ligands B)


C) Spin state D) All the above

- 73. Which among the following is **not** true regarding a DEPT spectra?
 - A) DEPT-135 gives signals of all protonated carbons, with CH & CH₃ signals positive, and CH₂ peaks negative.
 - B) The peak due to quaternary carbon is observed only in DEPT-90
 - C) DEPT-45 shows resonances of CH, CH₂ and CH₃ with a positive phase
 - D) DEPT-45 spectrum is obtained faster than the basic 1D C^{13} spectrum.
- 74. The calculated λ_{max} for the compounds given below is respectively ---- & ----nm.

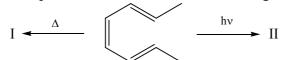

- A) 231 and 302
- B) 302 and 231
- C) 256 and 280
- D) 280 and 256
- 75. A compound with Molecular formula $C_{13}H_{10}O$ shows a 10 H multiplet at 7.5 ppm in the H-NMR. The C^{13} -NMR has 4 peaks in the range 128-137 and a peak at 196 ppm. The compound is:



- 76. The splitting of signals in NMR is due to:
 - A) Shielding effect
- B) Spin-spin decoupling
- C) Spin-spin coupling
- D) Deshielding effect
- 77. The esr spectra of anthracene shows -----lines.
 - A) 25
- B) 75
- C) 150
- D) 300
- 78. Which of the following substituent's present in cyclohexane will contribute to a higher percentage of equatorial conformation?
 - A) tert-butyl
- B) isopropyl
- C) Ethyl
- D) Fluoro

79. The configuration of the molecules P and Q given below are:

- A) Both P and Q are S
- B) Both P and Q are R
- C) P is R and Q is S
- \overrightarrow{D} P is S and Q is R
- 80. Which chiral drug was responsible for foetal abnormalities?
 - A) Thalidomide B) Ethambutol C) Ketamine D) Dopa
- 81. The reaction given below is



- A) Claisen rearrangement B) di-pi methane rearrangement
- C) Norrish Type II reaction D) Barton Reaction
- 82. Cope rearrangement is a ----- sigmatropic rearrangement.
 - A) [1, 3]
- B) [2, 3]
- C) [3, 3]
- D) [3, 2]
- 83. The non-radiative process among the following is:
 - A) Absorption

- B) Phosphorescence
- C) Vibrational Relaxation
- D) Fluorescence
- 84. The major product in the reaction given below is:

85. Predict the products I and II in the reaction given below:

- A) I
- II Transport

- C) (

- The same of the sa

86. Match the class of terpenes in **List I** with examples in **List II**.

List I

List II

- a. Monoterpenes
- 1. Humulene
- b. Sesquiterpenes
- 2. Squalene
- c. Diterpenes
- 3. α–Phellandrene
- d. Triterpenes
- 4. Phytol
- A) a-3, b-1, c-2, d-4
- B) a-1, b-2, c-3, d-4
- C) a-3, b-1, c-4, d-2
- D) a-2, b-1, c-3, d-4
- 87. The nitrogenous base and their chemical name are given below. Which among them is **wrongly** matched?
 - A) Adenine 6-Aminopurine
 - B) Thymine -2,4-Dioxo-5methylpyrimidine
 - C) Guanine 2,6-Diamino-8-oxopurine
 - D) Cytosine 2-Oxo-4-aminopyrimidine
- 88. Two electrolytic cells, **I** containing acidified MCl₂ and **II** containing acidified MCl₃ are connected in series. The mass ratio (**I:II**) of metal (M) deposited at the cathodes in the two cells when electricity is passed will be:
 - A) 1:1
- B) 2:1
- C) 2:3
- D) 3:2
- 89. The value of E°_{cell} for a given reaction is negative. Then:
 - A) $\Delta G^{\circ} < 0$ and $K_{eq} > 1$
- B) $\Delta G^{\circ} < 0$ and $K_{eq} < 1$
- C) $\Delta G^{\circ} > 0$ and $K_{eq} < 1$
- D) $\Delta G^{\circ} > 0$ and $K_{eq} > 1$

90. The typical operating temperature of various fuel cells given below fol order:					
	Molte	n carbonate fuel cell (MCF0 t methanol fuel cell (DMFC	_	-	matic fuel cell (EFC) shoric acid fuel cell (PAFC)
	A) B) C) D)	PAFC >MCFC >DMFC >1 MCFC >PAFC >DMFC >1 PAFC >DMFC >EFC >MCFC >PAFC >EFC >DMCFC >PAFC >EFC >DMCFC >DMCFC >PAFC >EFC >DMCFC >DMCFC >PAFC >EFC >DMCFC >PAFC >EFC >DMCFC >PAFC >EFC >DMCFC >DMCFC >PAFC >EFC >DMCFC >DMCFC >PAFC >EFC >DMCFC >PAFC >EFC >DMCFC >PAFC >EFC >DMCFC >EFC >DMCFC >DMCFC >PAFC >EFC >DMCFC >DMCFC >PAFC >EFC >DMCFC >EFC >DMC	EFC CFC		
91.	Given 1. 2.				
	A) C)	1 is True and 2 is False Both 1 and 2 are True		B) D)	1 is False and 2 is True Both 1 and 2 are False
92.	The re		potent	ial and	the logarithmic current density
	A) C)	Butter-Volmer Equation Tafel Equation	B) D)		nett Equation t Equation
93.	Which among the following is not applicable for ESCA? 1. It can detect all elements in the periodic table 2. It uses a probe beam of X-rays of a single energy 3. Volatile samples can be readily used and produce good results. 4. It is traditionally used for studying surfaces 5. It is also known as XPS				e ergy
	A) C)	2 and 4 only 1, 4 and 5 only	B) D)		3 only nd 4 only
94.	Choos A) C)	se the wrongly matched pair Cheese – Gel Milk – Emulsion	r: B) D)		e – Aerosol Foam
95.	Which A)	h among the following is no The Michaelis constant K_m enzyme		_	ng Michaelis-Menten kinetics? y with the concentration of
	B)	A numerically small K _m re substrate	flects a	n poor a	affinity of the enzyme for
	C)	K _m is numerically equal to reaction velocity is equal to			concentration at which the
	D)	The rate of the reaction is concentration at all substra			

96.	The mA)	novement of d electrophores electro osmo	sis	on medium un B) D)	electr	influence of o dialysis noresis	electric	field is:		
97.		vavelength of t d from the n = 5.33 nm								
98.	P and Q are non commuting Hermitian Operators. Then all eigen values of the operator given by the commutator [P, Q] are: A) Real B) Imaginary C) Positive D) Zero									
99.	The sl A)	hielding consta 1.40	ant exp	erienced by a 1.70	2p elec C)	etron in the ni 2.80	trogen a	atom is 3.10		
100.	Spot t 1. 2. 3. 4.	 stable. For states with the same value of S, the one with largest L value is most stable. For states having the same value of L and S, the state with minimum value of J is most stable provided, the subshell is more than half filled 								
101.	ŕ	butadiene is $g(\alpha + \beta)$	ŕ	-	ŕ	1 and 3 only $4\alpha + 4\beta$	D)	2 and 4 only $4\alpha + 2.2\beta$		
102.	The b A) C)	The bond order of O_2 , O_2^+ , O_2^- and O_2^{2-} follows the order: A) $O_2^+ > O_2 > O_2^- > O_2^{2-}$ B) $O_2 > O_2^+ > O_2^- > O_2^{2-}$ C) $O_2^{2-} > O_2^- > O_2 > O_2^+$ D) $O_2 > O_2^{2-} > O_2^- > O_2^+$								
103.	The venergy A)		_	in the ground $1b_2$			g the hi D)	ghest 1b ₁		
104.	The p orbitals used in sp ² hybridisation are: A) px and py B) px and pz C) py and pz D) cannot predict									
105.	The n A)	umber of σ_v p	lanes pr B)		moleci C)	ale is:	D)	∞		

106.	Identi A) B) C) D)	B) The carbohydrate component in ribonucleic acid is D-ribose C) The start codon for protein biosynthesis is AUG						
107.	Lis a. b. c.	Herzeg-Meyer n	nethod	List II Met N-m Mol	thoxy g nethyl g lecular	roup group mass	ist II.	
	A) C)	a-2, b-1, c-4, d- a-3, b-4, c-1, d-			-	-2, c-4, d-3 -1, c-3, d-4		
108.	If the A)	ratio of densities 4:1 B			1, the r C)	ratio of their 1	RMS ve D)	locities will be: 8:1
109.	Lis a. b. c. d.	the crystal system that I Cubic Tetragonal Trigonal Triclinic a-4, b-3, c-1, d- a-4, b-3, c-2, d-	2	List II 1. Non 2. One 3. One 4. Fou	ne e 3-fold e 4-fold r 3-fold a-1, b	axis axis	ry elem	ent in List II .
110.	The critical constants of a gas X are $T_c = 309 \text{ K}$ and $V_c = 114 \text{ cm}^3 \text{mol}^{-1}$. The van der Waals parameters a and b are respectively and A) 8.819 atmL²mol⁻² and 0.103 Lmol⁻¹ B) 3.253 atmL²mol⁻² and 0.038 Lmol⁻¹ C) 1.216 atmL²mol⁻² and 0.014 Lmol⁻¹ D) 2.432 atmL²mol⁻² and 0.057 Lmol⁻¹							
111.		ransport process and in the wrong the conductive conductive can be conducted as a co	ong pair:	rrespond - - - -	Force Energ	y r momentum		e listed
112.	The to A)	emperature at wh 40 B		ıs & Fah	renheit C)	scales show 212	the sam D)	e reading: 273

113.	3. An element exists in two allotropic forms X and Y. The heats of combustion of X and Y are -13.89 kJ and -11.14 kJ respectively. The heat of transition of X to Y is:								sition of X	
	A)	-1.24	B)	1.24		C)	-2.75	D)	2.75	
114.		change in chen ermally from 2 5 kJ	_	30 atn	_	1 K is a	pproximatel		is increased 11 kJ	
115.	 Which among the following holds good for a system of fixed mass and composition involving only the work of expansion? U = f(S, V) H = f(S, P) G = f(T, P) A = f 									
	A) C)	3 and 4 only 2 and 3 only					-			
116.	Which A)	Which among the following is not true? A) Canonical Ensemble is a collection of all systems whose thermodynamic state is characterized by a fixed E, N and V.								
	 B) The Boltzmann formula for the entropy is given by S = k lnW. C) Stirling's approximation is given by ln x! ≈ x ln x - x D) Sackur–Tetrode equation can be used to calculate the entropy of a monatomic gas 									
117.	The k A) C)					can be studied using: B) Flash photolysis D) All the above				
118.	The values of the rate constant (k) were determined at several temperatures. A plot of ln k versus $1/T$ gave a straight line whose slope was -1.8×10^4 K. The activation energy of the reaction will be approximately A) $75 \text{ kJ mol}^{-1} \text{ B}$) $100 \text{ kJ mol}^{-1} \text{ C}$) $125 \text{ kJ mol}^{-1} \text{ D}$) 150 kJ mol^{-1}								1	
119.	In a n A) C)	fastest step i slowest step	-		letermi B) D)	simpl	est step involving fo	rmation	of major	
120.		rding to the Bregth when: z_A and z_B ha z_A and z_B ha z_A and z_B are z_A or z_B is zero	ve the s ve diffe e zero	same si	gn	ation, ra	ate constant	increase	es with ionic	